RESEARCH ARTICLE

Chemical and Biological Studies on Some Pregnane Derivatives

N. M. ABD EL-SALAM^{1^*} and G. A. AHMED²

¹ Department of Natural Sciences, Riyadh Community College, King Saud University, P.O.Box 2455, Riyadh-11451, Saudi Arabia

²Chemistry Department, Faculty of Science, Zagazig University, Egypt *nelsalam@ksu.edu.sa*

Received 8 May 2012 / Accepted 18 May 2012

Abstract: Reaction of the pregnane derivatives (1), (2), (3), and (4) with hydrazines, afforded the pyrazoline derivatives, (5a,b), (6a,b), (7a, b), and (8a,b) respectively, compound (1) and (3) reacted with urea and thiourea and give pyrimidine and pyrimidinethione derivatives (9a,b) and (10a,b) respectively. Also, compound (1) reacted with hydroxylamine hydrochloride and guanidine carbonate in refluxing ethanol and yield the isoxazole derivative (11), and the aminopyrimidine (12). Evaluation of the biological activity of the synthesized compounds, were carried and they had a significant effects as antibiotics and gram positive bacteria, and gram negative bacteria.

Keywords: Pyrimidine, Pyrazoline, Isoxazoline

Introduction

The present work is an extension to our studies on the preparation of some derivatives of α , β -unsaturated ketone pregnane by introducing of an extra heterocyclic ring into the pregnane nucleus and the observation of their biological activities^{1,2} due to the important position of pregnane series in the field of biochemistry as a natural steroidal hormones, so many trials were done for the preparation of this series^{3,4}, condensation of pegnane and it's epoxide with hydrazines^{5,6} to give steroidal pyrazol were also studied by Kamernits⁷ Synthesis of multideutrated sterols is highly needed to achieve the most accurate gas chromatography mass spectra (GC-MS) analysis of biologically relevant steroids. This can be useful, for example in the bile acids biosynthesis for metabolites such as 24-, 25- or 27-hydroxycholesterol⁸.

Experimental

All melting points (m.p °C) are not corrected. Infrared spectra (IR) were measured on: IR spectrum (KBr/pye unicum SP-1100) and the nuclear magnetic resonance (NMR) measured on: Jeol Ex. 270 F.T. spectrometer.

Reaction of compound (1), (2), (3) and (4) with hydrazines; formation of (5a,b), (6a,b), (7a,b) and (8a,b)

A solution of hydrazinehydrate, and/or phenylhydrazine (0.01 mole) in *n*-butanol (30 mL) and the appropriate pregnane derivative (0.01 mole) was heated under reflux for 6 h. The yellow solid obtained after cooling was collected and crystallized from the proper solvent to give compounds (**5a,b**), (**6a,b**), (**7a,b**) and (**8a,b**) (Table 1).

Reaction of compounds (1) *and* (3) *with urea and thiourea; formation of compounds* (9a b) *and* (10a, b)

A mixture of compound (1) and/or (3) (0.01 mole), urea, and /or thiourea (0.01 mole) and potassium hydroxide (1 g) in 30 mL absolute ethanol was refluxed for 5 h. The product was collected and crystallized from the proper solvent into compounds (9a,b) and (10a,b) (Table 1).

Reaction of (1) with hydroxylaminehydrochloride, formation of the isoxazole derivative (11)

A mixture of (1) (0.01 mol0 and hydroxylaminehydrochloride (0.01 mole) in ethanol (30 mL) was refluxed for 6 h. The reaction mixture was concentrated and left to cool. The solid precipitated was collected and crystallized from acetic acid into (11) (Table 1).

Reaction of compound (1) with guanidine carbonate; formation of (12)

A mixture of (1) (0.01 mole) and guanidine carbonate (0.01 mole) in ethanol (30 mL) was refluxed for 8 h. The solid formed after concentration and cooling was collected and crystallized from ethanol (Table 1).

Results and Discussion

It has been found that, when compounds (1), (2), (3) and (4) was allowed to react with hydrazines, namely (hydrazinehydrate and phenylhydrazine) in refluxing *n*-butanol it yield the hydrazones, which rearranged immediately into the isomeric pyrazoline derivatives (5a,b), (6a,b), (7a,b), and (8a,b), respectively (Scheme 1). The structure of the synthesized compounds (5a,b), (6a,b), (7a,b), and (8a,b) was confirmed from their correct spectral data (Table 1).

When compounds (1) and (3) was reacted with urea, thiourea in refluxing absolute ethanol in the presence of potassium hydroxide it afforded the compounds (9a,b) and (10a,b), respectively (scheme 1).

On the other hand, reaction of compound (1) with hydroxylaminehydrochloride, and guanidine carbonate gave the isoxazol derivative (11) and the aminopyrimidine (12), respectively (Scheme 1). Chemical structure of the compounds (9a,b), (10a,b), (11), and (12) was elucidated from their correct spectral data (Table 1).

a, R = X

Scheme 1 Table 1. Physical and Spectral Data of Compounds (5-12)

Compd.	M.P.°C/% Solvent of crystallization	Yield %	IR cm ⁻¹	¹ H NMR ppm		
5.	278	37	1610 (υ C=N)	1.6-2.4 (9H, 3CH ₃)		
Ja	Ethanol		1680 (υ C=O)	6.3 (s, NH proton)		
5b	296	42	1590 (υ C=N)	$1.5 - 2.6 (9H, 3CH_3)$		
	Ethanol		16/0 (v C=O)	7.4 – 8 (m, 10H, Ar H'S)		
			3350 (0 NH)	65 (a. 111 MII)		
6a	186	38	1000 (0 C-N) 2260 (0 NIH)	0.3(8, 1H, NH)		
	Methanol		3300(0 NH) 3460(0 OH)	1.5 - 2.5 (9H, 5 CH ₃)		
	211	52	1580 (0 CH)	13 24 (0H 3CH)		
6b	Methanol	52	3470 (0 C-N)	73 - 78 (m 5H Ar H'S)		
	Wieddanor		1580 (0 CH)	1.2-2.3 (9H 3CH ₂)		
7a	247	61	3356 (0 NH)	6.4 (s. 1H.NH)		
	Ethanol		3470 (v OH)	0.1 (0, 111, (11)		
7b	268	49	1610 (v C=N)	1.3 – 2.5 (9H, 3CH ₃)		
	Ethanol		3450 (υ OH)	7.4 – 8.0 (m, 5H, Ar H'S)		
	100	56	1560 (v C=N)	1.2 - 2.4 (9H, 3 CH ₃)		
8a	189		3360 (v NH)	6.5 (s, NH)		
	Ethanol		1660 (υ C=O),1710 (_C=O)	7.1-8 (5H, ArH'S)		
	205	63	1580 (υ C=N)	12 22(0H 2CH)		
8b	203 Ethanol		1650 (υ C=O)	$1.3 - 2.3 (9H, 3CH_3)$ 7 2 8 3 (m 10 Ar H'S)		
	Emanol		1670 (υ C=O)	7.2 – 8.3 (III, 10, AI 113)		
9a	243	68	1630 (υ C=H)	7.6 (s, NH)		
	Ethanol		1680 (v C=O)	1.3 – 2.4 (9H, 3 CH ₃		
	200000		3350 (v NH)	7.8 – 8.3 (m, 5H Ar H'S)		
9b	197	54	1610 (v C=N)	$1.2 - 2.4 (9H, 3 CH_3)$		
	Ethanol		1690 (v C=O)	5.7 (s, NH proton)		
			3340 (0 NH)	/.6 – 8.1 (m, 5H, Ar H'S)		
10.	211	51	1600 (0 C=N) 2220 (0 NIII)	1.3 – 2.5 (9H, 3 CH ₃)		
10a	Ethanol		3320 (U NH) 3460 (D OH)	7.5 (s, 1H, NH)		
			JH00 (0 011)			

Contd...

-				
10b	178 Ethanol	39	1580 (υ C=N) 3350 (υ NH) 3480 (υ OH)	1.4 – 2.6 (9H, 3 CH ₃) 5.8 (s, 1H,NH)
11	256 Acetic acid	44	1630 (υ C=N) 1690 (υ C=H)	1.4 – 2.3 (9H, 3 CH ₃) 7.5 – 8.2 (m, 5H, Ar H'S)
12	271 Ethanol	58	1590 (υ C=N) 1690 (υ C=O) 3350,3220 (υ NH ₂)	1.2 – 2.4 (9H, 3 CH ₃) 7.2 – 8.0 (m, 5H, Ar H'S) 6.3 (s, 2H,NH ₂)

Assay of antimicrobial activity of some pergnane derivatives

The biological activity of the tested compounds (Table 2) have evaluated (estimated) using filter paper disc methods^{9,10} discovering the substances (5a), (6b), (7b), (9a), (9b), (10a), (10b), (11), and (12) in the appropriate solvent indicated in table applied. The inhibition zones of microbial growth surrounding the paper disc (5 mm φ) were measured in mm (millimeter) at the end of incubation period (18-24 h at 37°C).

The biological effect of the mentioned compounds is studied as antibiotics and against Gram positive bacteria (*Staphylococcus aureus*) and Gram negative bacteria (*Echerichia coli, Pseudomonas aerugonosa, Klebsiella spp, Proteus vulgaris*). From this study it was found that:

- 1. The compounds (5a), (7b), (9b), (10a), (10b), (11), and (12) have high effect on proteus vulgaris bacteria.
- 2. The sulfur heterocyclic compound is the highest biological effect.
- Comparison between the compounds (9a), (9b), (10a), and (10b) indicate compounds (9b) and (10b) has high effect against most types of bacteria, because it contains sulfur in its ring.

C	Solvent	Diameter of Inhibition Zone				
Compound		S. aureus	E. coli	p. aer	K. spp	Pr. Vulg
5a	EtOH	++ ve	++ ve	++ ve	++ ve	+++ ve
6b	EtOH	-ve	- ve	+ ve	++ ve	++ ve
7b	EtOH	++ ve	++ ve	++ ve	++ ve	+++ ve
8a	EtOH	++ ve	++ ve	++ ve	++ ve	++ ve
9a	Acetone	+ ve	+ ve	++ ve	++ ve	++ ve
9b	Acetone	+++ ve	++ ve	++ ve	+++ ve	+++ ve
10a	Acetone	+ ve	- ve	++ ve	++ ve	+++ ve
10b	Acetone	+++ ve	+++ ve	+++ ve	+++ ve	+++ ve
11	EtOH	++ ve	++ ve	++ ve	+++ ve	++ ve
12	EtOH	- ve	- ve	+ ve	++ ve	++ ve

Table 2. Antimicrobial activity of the test compounds

+ve = 8 mm, ++ ve = 12 mm, +++ ve = 18 mm, S. aureus = Staphylococcus aureus, E. coli = Echerichia coli, p. aer = Pseudomonas aerugonosa, K. spp = Klebsiella spp, Pr. Vulg = Proteus vulgaris

References

- 1. Ahmed G A and El-Mousallamy A M, The Egyptian Society of Toxicology, 1999, 100
- 2. El-Mousallamy A M and Ahmed G A, Bult N R C., Egypt, 1995, 20, 33.
- 3. Jia P, Xuling Wu and Yongping Yu G Z, *Steroids*, 2009, **74**, 229-232.
- 4. Sibiga A, Sendra S and Janeezko Z, *Herba Pol.*, 1985, **31**, 21.
- 5. Micovic I V, Ivanovic M D and Piatak D M, Synthesis, 1990, 7, 591.
- 6. Compos Neves A S, Sae Melo M L and Lopes M I, *Quinn From Coimbra Pol Pol Fac Farm Coimbra.*, 1985, **6(8)**, 23.
- 7. Kamernitskii A V, Chernoburova E I, Chertkova, V V, Yarovenko V N and Zavarzin, I V, *Russian Chemical Bulletin*, 2006, **55**(11), 2117.
- 8. Pierangela C, Silvana C, Deorah B and Wnzo S, *Steroids*, 2003, 68, 193.
- 9. Sakuri A and Midorikawa H, Bull Chem Soc Japan, 1968, 41, 430.
- 10. Nene Y.L and Thapliycel P.N, Fungicides in plant disease control; Oxford and 1BH Publication, New Delhi, 1982, 192.